Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Viruses ; 12(5)2020 04 30.
Article in English | MEDLINE | ID: covidwho-1726009

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first occurred in Wuhan (China) in December of 2019, causes a severe acute respiratory illness with a high mortality rate, and has spread around the world. To gain an understanding of the evolution of the newly emerging SARS-CoV-2, we herein analyzed the codon usage pattern of SARS-CoV-2. For this purpose, we compared the codon usage of SARS-CoV-2 with that of other viruses belonging to the subfamily of Orthocoronavirinae. We found that SARS-CoV-2 has a high AU content that strongly influences its codon usage, which appears to be better adapted to the human host. We also studied the evolutionary pressures that influence the codon usage of five conserved coronavirus genes encoding the viral replicase, spike, envelope, membrane and nucleocapsid proteins. We found different patterns of both mutational bias and natural selection that affect the codon usage of these genes. Moreover, we show here that the two integral membrane proteins (matrix and envelope) tend to evolve slowly by accumulating nucleotide mutations on their corresponding genes. Conversely, genes encoding nucleocapsid (N), viral replicase and spike proteins (S), although they are regarded as are important targets for the development of vaccines and antiviral drugs, tend to evolve faster in comparison to the two genes mentioned above. Overall, our results suggest that the higher divergence observed for the latter three genes could represent a significant barrier in the development of antiviral therapeutics against SARS-CoV-2.


Subject(s)
Betacoronavirus/genetics , Codon , Coronavirus/genetics , Genome, Viral , Base Composition , Betacoronavirus/chemistry , Betacoronavirus/physiology , Biological Evolution , Coronavirus/classification , Genes, Viral , Host Specificity , Mutation , Phylogeny , SARS-CoV-2
2.
Int J Biol Macromol ; 204: 356-363, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1670549

ABSTRACT

Infections caused by SARS-CoV-2 have brought great harm to human health. After transmission for over two years, SARS-CoV-2 has diverged greatly and formed dozens of different lineages. Understanding the trend of its genome evolution could help foresee difficulties in controlling transmission of the virus. In this study, we conducted an extensive monthly survey and in-depth analysis on variations of nucleotide, amino acid and codon numbers in 311,260 virus samples collected till January 2022. The results demonstrate that the evolution of SARS-CoV-2 is toward increasing U-content and reducing genome-size. C, G and A to U mutations have all contributed to this U-content increase. Mutations of C, G and A at codon position 1, 2 or 3 have no significant difference in most SARS-CoV-2 lineages. Current viruses are more cryptic and more efficient in replication, and are thus less virulent yet more infectious. Delta and Omicron variants have high mutability over other lineages, bringing new threat to human health. This trend of genome evolution may provide a clue for tracing the origin of SARS-CoV-2, because ancestral viruses should have lower U-content and probably bigger genome-size.


Subject(s)
Base Composition/genetics , COVID-19/genetics , SARS-CoV-2/genetics , Base Sequence/genetics , COVID-19/transmission , China , Codon/genetics , Evolution, Molecular , Genome/genetics , Genome Size/genetics , Genome, Viral/genetics , Humans , Mutation/genetics , Phylogeny , SARS-CoV-2/pathogenicity , Uracil/metabolism
3.
Infect Genet Evol ; 97: 105175, 2022 01.
Article in English | MEDLINE | ID: covidwho-1555685

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads all over the world and brings great harm to humans in many countries. Many new SARS-CoV-2 variants appeared during its transmission. In the present study, the Delta variants (B.1.617.2) of SARS-CoV-2, which have appeared in many countries, were considered for analysis. In order to evaluate the evolutionary divergence of the Delta variants(B.1.617.2), the codon usage divergence in Delta variants (B.1.617.2) of SARS-CoV-2 was compared to that of the SARS-CoV-2 genomes emerged before June 2020. All Delta variants (B.1.617.2) and 350 early genomes of SARS-CoV-2 in the NCBI database were downloaded. Codon usage pattern including the basic composition, the GC ratio of the third position (GC3) and the first two positions (GC12) in codons, overall GC contents, the effective number of codons (ENC), the codon bias index (CBI), the relative synonymous codon usage (RSCU) values, etc., of all concerned important gene sequences were all calculated. Codon usage divergence of them was calculated via summing their standard deviations. The results suggested that base compositions in both Delta variants (B.1.617.2) of SARS-CoV-2 and the early SARS-CoV-2 genomes were similar to each other. However, the internal codon usage divergence for most genes in Delta variants (B.1.617.2) was significantly wider than that of SARS-CoV-2. The RSCU values were further used to explore the synonymous and non-synonymous mutations in the sequences of the Delta variants (B.1.617.2), and the results showed the synonymous mutations are more obvious than the non-synonymous in the concerned sequences. The related codon usage divergence analysis is helpful for further study on the adaptability and disease prognosis of the SARS-CoV-2 variants.


Subject(s)
COVID-19/epidemiology , Codon/chemistry , Genome, Viral , Mutation , SARS-CoV-2/genetics , Viral Proteins/genetics , Base Composition , COVID-19/transmission , COVID-19/virology , Databases, Genetic , Epidemiological Monitoring , Evolution, Molecular , Gene Expression , Humans , Open Reading Frames , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Viral Proteins/metabolism
4.
Infect Genet Evol ; 93: 104951, 2021 09.
Article in English | MEDLINE | ID: covidwho-1253387

ABSTRACT

The devastating outbreak of COVID-19 has spread all over the world and has become a global health concern. There is no specific therapeutics to encounter the COVID-19. Small interfering RNA (siRNA)-based therapy is an efficient strategy to control human viral infections employing post-transcriptional gene silencing (PTGS) through neutralizing target complementary mRNA. RNA-dependent RNA polymerase (RdRp) encoded by the viral RdRp gene as a part of the replication-transcription complex can be adopted as an acceptable target for controlling SARS-CoV-2 mediated infection. Therefore, in the current study, accessible siRNA designing tools, including significant algorithms and parameters, were rationally used to design the candidate siRNAs against SARS-COV-2 encoded RdRp. The designed siRNA molecules possessed adequate nucleotide-based and other features for potent gene silencing. The targets of the designed siRNAs revealed no significant matches within the whole human genome, ruling out any possibilities for off-target silencing by the siRNAs. Characterization with different potential parameters of efficacy allowed selecting the finest siRNA among all the designed siRNA molecules. Further, validation assessment and target site accessibility prediction also rationalized the suitability of this siRNA molecule. Molecular docking study between the selected siRNA molecule and component of RNA interference (RNAi) pathway gave an excellent outcome. Molecular dynamics of two complexes: siRNA and argonaute complex, guide RNA, and target protein complex, have shown structural stability of these proteins. Therefore, the designed siRNA molecule might act as an effective therapeutic agent against the SARS-CoV-2 at the genome level and can prevent further outbreaks of COVID-19 in humans.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/genetics , RNA, Small Interfering/genetics , SARS-CoV-2/genetics , Argonaute Proteins/chemistry , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Base Composition , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Gene Silencing , Genome, Human , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/chemistry , Sequence Alignment
5.
Genomics ; 113(4): 2177-2188, 2021 07.
Article in English | MEDLINE | ID: covidwho-1233643

ABSTRACT

The prevailing COVID-19 pandemic has drawn the attention of the scientific community to study the evolutionary origin of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). This study is a comprehensive quantitative analysis of the protein-coding sequences of seven human coronaviruses (HCoVs) to decipher the nucleotide sequence variability and codon usage patterns. It is essential to understand the survival ability of the viruses, their adaptation to hosts, and their evolution. The current analysis revealed a high abundance of the relative dinucleotide (odds ratio), GC and CT pairs in the first and last two codon positions, respectively, as well as a low abundance of the CG pair in the last two positions of the codon, which might be related to the evolution of the viruses. A remarkable level of variability of GC content in the third position of the codon among the seven coronaviruses was observed. Codons with high RSCU values are primarily from the aliphatic and hydroxyl amino acid groups, and codons with low RSCU values belong to the aliphatic, cyclic, positively charged, and sulfur-containing amino acid groups. In order to elucidate the evolutionary processes of the seven coronaviruses, a phylogenetic tree (dendrogram) was constructed based on the RSCU scores of the codons. The severe and mild categories CoVs were positioned in different clades. A comparative phylogenetic study with other coronaviruses depicted that SARS-CoV-2 is close to the CoV isolated from pangolins (Manis javanica, Pangolin-CoV) and cats (Felis catus, SARS(r)-CoV). Further analysis of the effective number of codon (ENC) usage bias showed a relatively higher bias for SARS-CoV and MERS-CoV compared to SARS-CoV-2. The ENC plot against GC3 suggested that the mutational bias might have a role in determining the codon usage variation among candidate viruses. A codon adaptability study on a few human host parasites (from different kingdoms), including CoVs, showed a diverse adaptability pattern. SARS-CoV-2 and SARS-CoV exhibit relatively lower but similar codon adaptability compared to MERS-CoV.


Subject(s)
COVID-19/genetics , Codon Usage/genetics , Evolution, Molecular , SARS-CoV-2/genetics , Base Composition/genetics , COVID-19/virology , Codon/genetics , Computational Biology , Genome, Viral/genetics , Humans , Nucleotides/genetics , Pandemics , SARS-CoV-2/pathogenicity
6.
BMC Microbiol ; 21(1): 89, 2021 03 23.
Article in English | MEDLINE | ID: covidwho-1148210

ABSTRACT

BACKGROUND: When a virus that has grown in a nonhuman host starts an epidemic in the human population, human cells may not provide growth conditions ideal for the virus. Therefore, the invasion of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is usually prevalent in the bat population, into the human population is thought to have necessitated changes in the viral genome for efficient growth in the new environment. In the present study, to understand host-dependent changes in coronavirus genomes, we focused on the mono- and oligonucleotide compositions of SARS-CoV-2 genomes and investigated how these compositions changed time-dependently in the human cellular environment. We also compared the oligonucleotide compositions of SARS-CoV-2 and other coronaviruses prevalent in humans or bats to investigate the causes of changes in the host environment. RESULTS: Time-series analyses of changes in the nucleotide compositions of SARS-CoV-2 genomes revealed a group of mono- and oligonucleotides whose compositions changed in a common direction for all clades, even though viruses belonging to different clades should evolve independently. Interestingly, the compositions of these oligonucleotides changed towards those of coronaviruses that have been prevalent in humans for a long period and away from those of bat coronaviruses. CONCLUSIONS: Clade-independent, time-dependent changes are thought to have biological significance and should relate to viral adaptation to a new host environment, providing important clues for understanding viral host adaptation mechanisms.


Subject(s)
Base Composition , Evolution, Molecular , Genome, Viral , SARS-CoV-2/genetics , Animals , Chiroptera/virology , Humans , Oligonucleotides
7.
Viruses ; 12(12)2020 12 20.
Article in English | MEDLINE | ID: covidwho-1073490

ABSTRACT

Due to their need for living cells, viruses have developed adaptive evolutionary strategies to survive and perpetuate in reservoir hosts that play a crucial role in the ecology of emerging pathogens. Pathogenic and potentially pandemic betacoronaviruses arose in humans in 2002 (SARS-CoV, disappeared in July 2003), 2012 (MERS-CoV, still circulating in Middle East areas), and 2019 (SARS-CoV-2, causing the current global pandemic). As universally recognized, bats host ancestors of the above-mentioned zoonotic viruses. However, hedgehogs have been recently identified in Europe and Asia as possible reservoirs of MERS-CoV-like strains classified as Erinaceus coronavirus (EriCoV). To elucidate the evolution and genetics of EriCoVs, NGS (next generation sequencing) and Sanger sequencing were used to examine fecal samples collected in Northern Italy in 2018/2019 from 12 hedgehogs previously found EriCoV-positive by RT-PCR. By sequence analysis, eight complete EriCoV genomes, obtained by NGS, showed a high phylogenetic correlation with EriCoV strains previously reported in Eurasia. Interestingly, eight viral strains presented an additional ORF encoding for the CD200 ortholog located between the genes encoding for the Spike and the ORF3a proteins. The CD200 ortholog sequences were closely similar to the host CD200 protein but varying among EriCoVs. The result, confirmed by Sanger sequencing, demonstrates for the first time that CoVs can acquire host genes potentially involved in the immune-modulatory cascade and possibly enabling the virus to escape the host defence.


Subject(s)
Coronavirus Infections/virology , Coronavirus/classification , Coronavirus/genetics , Hedgehogs/virology , Animals , Base Composition , Betacoronavirus/classification , Betacoronavirus/genetics , COVID-19/virology , Chiroptera/virology , Evolution, Molecular , Genome, Viral , Middle East Respiratory Syndrome Coronavirus/genetics , Pandemics , Phylogeny , SARS-CoV-2/genetics , Sequence Alignment , Sequence Analysis , Spike Glycoprotein, Coronavirus/genetics
8.
Genomics ; 113(1 Pt 1): 331-343, 2021 01.
Article in English | MEDLINE | ID: covidwho-972544

ABSTRACT

An outbreak, caused by an RNA virus, SARS-CoV-2 named COVID-19 has become pandemic with a magnitude which is daunting to all public health institutions in the absence of specific antiviral treatment. Surface glycoprotein and nucleocapsid phosphoprotein are two important proteins of this virus facilitating its entry into host cell and genome replication. Small interfering RNA (siRNA) is a prospective tool of the RNA interference (RNAi) pathway for the control of human viral infections by suppressing viral gene expression through hybridization and neutralization of target complementary mRNA. So, in this study, the power of RNA interference technology was harnessed to develop siRNA molecules against specific target genes namely, nucleocapsid phosphoprotein gene and surface glycoprotein gene. Conserved sequence from 139 SARS-CoV-2 strains from around the globe was collected to construct 78 siRNA that can inactivate nucleocapsid phosphoprotein and surface glycoprotein genes. Finally, based on GC content, free energy of folding, free energy of binding, melting temperature, efficacy prediction and molecular docking analysis, 8 siRNA molecules were selected which are proposed to exert the best action. These predicted siRNAs should effectively silence the genes of SARS-CoV-2 during siRNA mediated treatment assisting in the response against SARS-CoV-2.


Subject(s)
COVID-19/therapy , Computational Chemistry , Coronavirus Nucleocapsid Proteins/genetics , Drug Design , Genetic Therapy/methods , Molecular Docking Simulation , RNA Interference , RNA, Messenger/antagonists & inhibitors , RNA, Small Interfering/chemistry , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Argonaute Proteins/chemistry , Argonaute Proteins/genetics , Base Composition , COVID-19/virology , Evolution, Molecular , Gene Expression Regulation, Viral/drug effects , Humans , Pandemics , Phosphoproteins/genetics , Phylogeny , RNA Folding , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , RNA, Messenger/genetics , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use , RNA, Viral/genetics , SARS-CoV-2/drug effects , Sequence Alignment , Thermodynamics , COVID-19 Drug Treatment
9.
Chem Biol Interact ; 331: 109226, 2020 Nov 01.
Article in English | MEDLINE | ID: covidwho-778555

ABSTRACT

Presence of Simple Sequence Repeats (SSRs), both in genic and intergenic regions, have been widely studied in eukaryotes, prokaryotes, and viruses. In the current study, we undertook a survey to analyze the frequency and distribution of microsatellites or SSRs in multiple genomes of Coronaviridae members. We successfully identified 919 SSRs with length ≥12 bp across 55 reference genomes majority of which (838 SSRs) were found abundant in genic regions. The in-silico analysis further identified the preferential abundance of hexameric SSRs than any other size-based motif class. Our analysis shows that the genome size and GC content of the genome had a weak influence on SSR frequency and density. However, we find a positive correlation of SSRs GC content with genomic GC content. We also report relatively low abundances of all theoretically possible 501 repeat motif classes in all the genomes of Coronaviridae. The majority of SSRs were AT-rich. Overall, we see an underrepresentation of SSRs across the genomes of Coronaviridae. Besides, our integrative study highlights the presence of SSRs in ORF1ab (nsp3, nsp4, nsp5A_3CLpro and nsp5B_3CLpro, nsp6, nsp10, nsp12, nsp13, & nsp15 domains), S, ORF3a, ORF7a, N & 3' UTR regions of SARS-CoV-2 and harbours multiple mutations (3'UTR and ORF1ab SSRs serving as major mutational hotspots). This indicates the genic SSRs are under selection pressure against mutations that might alter the reading frame and at the same time responsible for rapid protein evolution. Our preliminary results indicate the significance of the limited repertoire of SSRs in the genomes of Coronaviridae.


Subject(s)
Coronaviridae/genetics , Microsatellite Repeats/genetics , 3' Untranslated Regions , Base Composition , Base Sequence , Betacoronavirus/genetics , Evolution, Molecular , Genome, Viral , Humans , Mutation , Polyproteins , SARS-CoV-2 , Viral Proteins/genetics
10.
Mol Genet Genomics ; 295(6): 1537-1546, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-743727

ABSTRACT

Understanding how SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) efficiently reproduces itself by taking resources from the human host could facilitate the development of drugs against the virus. SARS-CoV-2 translates its own proteins by using the host tRNAs, so that its GC or codon usage should fit that of the host cells. It is necessary to study both the virus and human genomes in the light of evolution and adaptation. The SARS-CoV-2 virus has significantly lower GC content and GC3 as compared to human. However, when we selected a set of human genes that have similar GC properties to SARS-CoV-2, we found that these genes were enriched in particular pathways. Moreover, these human genes have the codon composition perfectly correlated with the SARS-CoV-2, and were extraordinarily highly expressed in human lung tissues, demonstrating that the SARS-CoV-2 genes have similar GC usage as compared to the lung expressed human genes. RSCU (relative synonymous codon usage) and CAI (codon adaptation index) profiles further support the matching between SARS-CoV-2 and lungs. Our study indicates that SARS-CoV-2 might have adapted to the human lung environment by observing the high correlation between GC usage of SARS-CoV-2 and human lung genes, which suggests the GC content of SARS-CoV-2 is optimized to take advantage of human lung tissues.


Subject(s)
Betacoronavirus/genetics , Codon Usage , Coronavirus Infections/genetics , Coronavirus Infections/virology , Lung/virology , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , Base Composition , COVID-19 , Genome, Human , Genome, Viral , Host-Pathogen Interactions/genetics , Humans , Pandemics , RNA-Seq , SARS-CoV-2
11.
Infect Genet Evol ; 85: 104471, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-664861

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused thousands of deaths worldwide and has become an urgent public health concern. The extraordinary interhuman transmission of this disease has urged scientists to examine the various facets of its pathogenic agent, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, based on publicly available genomic data, we analyzed the codon usage co-adaptation profiles of SARS-CoV-2 and other respiratory coronaviruses (CoVs) with their human host, identified CoV-responsive human genes and their functional roles on the basis of both the relative synonymous codon usage (RSCU)-based correlation of viral genes with human genes and differential gene expression analysis, and predicted potential drugs for COVID-19 treatment based on these genes. The relatively high codon adaptation index (CAI) values (>0.70) signposted the gene expressivity efficiency of CoVs in human. The ENc-GC3 plot indicated that SARS-CoV-2 genome was under strict selection pressure while SARS-CoV and MERS-CoV were under selection and mutational pressures. The RSCU-based correlation analysis indicated that the viral genomes shared similar codons with a panoply of human genes. The merging of RSCU-based correlation data and SARS-CoV-2-responsive differentially expressed genes allowed the identification of human genes potentially affected by SARS-CoV-2 infection. Functional enrichment analysis indicated that these genes were enriched in biological processes and pathways related to host response to viral infection and immune response. Using the drug-gene interaction database, we screened a list of drugs that could target these genes as potential COVID-19 therapeutics. Our findings not only will contribute in vaccine development but also provide a useful set of drugs that could guide practitioners in strategical monitoring of COVID-19. We recommend practitioners to scrupulously screen this list of predicted drugs in order to authenticate those qualified for treating COVID-19 symptoms.


Subject(s)
Computational Biology/methods , Coronavirus/genetics , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Base Composition , Codon Usage , Coronavirus/classification , Coronavirus/drug effects , Databases, Genetic , Drug Evaluation, Preclinical , Humans , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/drug effects , Sequence Analysis, RNA
12.
Infect Genet Evol ; 85: 104432, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-614101

ABSTRACT

The genetic code contains information that impacts the efficiency and rate of translation. Translation elongation plays a crucial role in determining the composition of the proteome, errors within a protein contributes towards disease processes. It is important to analyze the novel coronavirus (2019-nCoV) at the codon level to find similarities and variations in hosts to compare with other human coronavirus (CoVs). This requires a comparative and comprehensive study of various human and zoonotic nature CoVs relating to codon usage bias, relative synonymous codon usage (RSCU), proportions of slow codons, and slow di-codons, the effective number of codons (ENC), mutation bias, codon adaptation index (CAI), and codon frequencies. In this work, seven different CoVs were analyzed to determine the protein synthesis rate and the adaptation of these viruses to the host cell. The result reveals that the proportions of slow codons and slow di-codons in human host of 2019-nCoV and SARS-CoV found to be similar and very less compared to the other five coronavirus types, which suggest that the 2019-nCoV and SARS-CoV have faster protein synthesis rate. Zoonotic CoVs have high RSCU and codon adaptation index than human CoVs which implies the high translation rate in zoonotic viruses. All CoVs have more AT% than GC% in genetic codon compositions. The average ENC values of seven CoVs ranged between 38.36 and 49.55, which implies the CoVs are highly conserved and are easily adapted to host cells. The mutation rate of 2019-nCoV is comparatively less than MERS-CoV and NL63 that shows an evidence for genetic diversity. Host-specific codon composition analysis portrays the relation between viral host sequences and the capability of novel virus replication in host cells. Moreover, the analysis provides useful measures for evaluating a virus-host adaptation, transmission potential of novel viruses, and thus contributes to the strategies of anti-viral drug design.


Subject(s)
Computational Biology/methods , Coronavirus/genetics , Mutation Rate , SARS-CoV-2/genetics , Base Composition , Coronavirus/classification , Coronavirus/metabolism , Evolution, Molecular , Genetic Code , Humans , Phylogeny , Protein Biosynthesis , SARS-CoV-2/classification , SARS-CoV-2/metabolism
13.
mSphere ; 5(3)2020 06 24.
Article in English | MEDLINE | ID: covidwho-612518

ABSTRACT

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has motivated an intensive analysis of its molecular epidemiology following its worldwide spread. To understand the early evolutionary events following its emergence, a data set of 985 complete SARS-CoV-2 sequences was assembled. Variants showed a mean of 5.5 to 9.5 nucleotide differences from each other, consistent with a midrange coronavirus substitution rate of 3 × 10-4 substitutions/site/year. Almost one-half of sequence changes were C→U transitions, with an 8-fold base frequency normalized directional asymmetry between C→U and U→C substitutions. Elevated ratios were observed in other recently emerged coronaviruses (SARS-CoV, Middle East respiratory syndrome [MERS]-CoV), and decreasing ratios were observed in other human coronaviruses (HCoV-NL63, -OC43, -229E, and -HKU1) proportionate to their increasing divergence. C→U transitions underpinned almost one-half of the amino acid differences between SARS-CoV-2 variants and occurred preferentially in both 5' U/A and 3' U/A flanking sequence contexts comparable to favored motifs of human APOBEC3 proteins. Marked base asymmetries observed in nonpandemic human coronaviruses (U ≫ A > G ≫ C) and low G+C contents may represent long-term effects of prolonged C→U hypermutation in their hosts. The evidence that much of sequence change in SARS-CoV-2 and other coronaviruses may be driven by a host APOBEC-like editing process has profound implications for understanding their short- and long-term evolution. Repeated cycles of mutation and reversion in favored mutational hot spots and the widespread occurrence of amino acid changes with no adaptive value for the virus represent a quite different paradigm of virus sequence change from neutral and Darwinian evolutionary frameworks and are not incorporated by standard models used in molecular epidemiology investigations.IMPORTANCE The wealth of accurately curated sequence data for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), its long genome, and its low substitution rate provides a relatively blank canvas with which to investigate effects of mutational and editing processes imposed by the host cell. The finding that a large proportion of sequence change in SARS-CoV-2 in the initial months of the pandemic comprised C→U mutations in a host APOBEC-like context provides evidence for a potent host-driven antiviral editing mechanism against coronaviruses more often associated with antiretroviral defense. In evolutionary terms, the contribution of biased, convergent, and context-dependent mutations to sequence change in SARS-CoV-2 is substantial, and these processes are not incorporated by standard models used in molecular epidemiology investigations.


Subject(s)
Betacoronavirus/genetics , Cytosine/analysis , Genome, Viral/genetics , Polymorphism, Single Nucleotide/genetics , Uracil/analysis , APOBEC Deaminases , Base Composition/genetics , Base Sequence/genetics , COVID-19 , Coronavirus Infections/pathology , Cytidine Deaminase/genetics , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Pandemics , Pneumonia, Viral/pathology , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL